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Abstract-A micro crack can be initiated by coalescing dislocations piled up along a slip plane.
This mechanism was firstly proposed by Zener and later on analyzed by Stroh. The micro crack is
thus called Zener-Stroh crack, which is a counterpart of the well-known Griffith crack in linear
elastic fracture mechanics. In the present paper, we consider a Zener-Stroh crack initiated near a
bi-material interface. Due to image force acted on the dislocations, a Griffith crack mechanism is
introduced even where the crack is purely loaded by net dislocations. It is seen that the stress
intensity factor, which consists of a Zener-Stroh component and a Griffith component, and the
critical crack length are strongly affected by the presence of the interface. ,:g 1997 Elsevier Science
Ltd.

I. INTRODUCTION

The Zener-Stroh crack, sometimes being called Zener crack or some other names, comes
from its own history. It was Zener in 1947 who proposed that dislocations piled up along
a slip plane could coalesce into a micro crack at the leading dislocation (see Fig. la). In his
model, dislocations were stopped by an obstacle where a crack is thus initiated to release
high level energy accumulated in the dislocation pileup. Other mechanisms of micro crack
initiation via dislocation pileups were observed and shown in Fig. 1b and Fig. 1c. The as
initiated micro crack was first analyzed by Stroh (1954) for homogeneous materials (Fig.
la). After a series of analyses and arguments (Stroh (1955», Stroh concluded that the
initiation of a Zener crack in a solid is possible provided that the energy for the crack
initiation is lower than that for other mechanisms, such as dislocation climbing. Analytical
work for the configuration shown in Fig. lc was carried out recently by Cherpanov (1994)
for isotropic bi-material and Fan (1994) for general anisotropic linear elastic bi-material
by using the so called Stroh formalism (1958). Since the initiated crack is on the interface,
complexities, such as crack tip oscillatory behavior, are involved. Nonetheless, all key
features of a Zener-Stroh crack are still there.

The energy concept in Zener-Stroh crack and traditional Griffith's crack was gen
eralized by Cottrel and others (see Weertman, 1986). When a crack is loaded by both net
dislocations (bI ) and external constant stress traction (0'), the energy stored in the system
as a function of crack length is schematically depicted in Fig. 2. It is seen that there are two
values of critical crack length due to two mechanisms, namely Zener~Stroh and Griffith
mechanisms. A brief explanation is that the stress intensity factor now consists of two
components K zs and Kc.

(1)

due to the Zener-Stroh and Griffith mechanism, respectively. In the equation, a is the crack
length, and the critical crack length acr can be obtained by
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Fig. 1. (a) Zener's mechanism of crack initiation; (b) Cottrel's model of crack initiation; (c) crack
initiation at the interface of a bi-material.

(2)

The above equation is a second order equation for the critical crack length and thus has
two solutions for aero The shorter one a;;' is under the Zener crack mechanism and is energy
wise stable; while the longer one a;;; corresponds to the Griffith crack mechanism which is
energy wise unstable. Increasing dislocation loading (b T) pushes the a;;' value higher; while
increasing stress traction loading forces the a;;; value lower. It is not difficult to see that the
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Fig. 2. Critical crack lengths.

Zener-Stroh mechanism controlled critical crack length gives the original size of a micro
crack which is initiated from dislocation pileups; while the Griffith mechanism controlled
critical crack length predicts the moment of catastrophic failure of the material.

In the present paper, we consider Zener-Stroh cracks near an interface, as shown in
Fig. 3a and Fig. 3b. From the solution of a single dislocation near an interface (Dundurs,
1969a), we know that the dislocation is under a stress field of its own image caused by the
bi-material interface. By using the equivalency concept between a crack and a pileup of
dislocations, a Zener-Stroh crack loaded by net dislocations is also under stress traction
on the crack surfaces due to the presence of dislocation images introduced by the interface.
The stress intensity factor will be comprised by two parts, namely, the Zener-Stroh com
ponent and Griffith component even there is no external traction added on at infinity. As
another important parameter for Zener-Stroh crack, the critical crack length will also be
affected by the presence of the interface. The size of this critical crack length, although it is
still stable in terms of energy, will be enlarged or suppressed depending on combination of
the bimaterial moduli.

In order to focus our attention on new issues raised by interface and Zener-Stroh
crack, a Mode III crack is analyzed in the following sections where only one bi-material
constant is involved in this anti-plane problem. On the other hand, the more important
cases, Mode I and II cracks, involve two bi-material constants (Dundurs, 1969b) and crack
tip oscillatory behavior. Nonetheless, our analysis and discussion as well as the numerical
scheme in the following sections can be applied to Mode I and II without any difficulties.
The results for Mode I and II will be presented in a follow-up paper for the sake of
completeness of the research on this topic.

2. A ZENER-STROH CRACK PERPENDICULAR TO AN INTERFACE

2.1. Governing equation
Since we are going to make a crack equivalent to a pileup of dislocations, we start our

formulation with the solution of a single dislocation near an interface. The stress field of a
screw dislocation near the interface, which was firstly presented by Head in 1953, was given
by Dundurs (1969a) in a very neat form. Refer to Fig. 4 for coordinate and geometric
parameters, a single screw dislocation with Bergs vector b= located at (t, 0), with the branch
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Fig. 3. (a) A Zener-Stroh crack perpendicular to the interface; (b) a Zener-Stroh crack parallel to
the interface.

cut line along negative x-axis, the displacement and stress field for any given point (x,y)
caused by the dislocation are obtained as

where

(I) _ OU~I) _ G 1bz (08] 0(2 )

(Jzx - G] ox - 2n ox +y ox

(I) _ ou~ _ G 1bz (08] 0(2 )
(Jzy - G1 0 - 2 0 + Y 0Y n Y y

(3)

(4)

(5)

(6)
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Fig. 4. A dislocation near an interface.
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G1 and G2 are the shear moduli of materials land 2, respectively. Expressing 81 and 82 in
terms of '1, '2, X, Y and t, the stress a~l) is given by

(I) G1bz(X-t x+t)a =~- -~+}'~-
zy 2 2 2'

n'l '2
(7)

when the point (x,y) is on the x-axis,'1 = X-t"2 = x+t. Applying the solution (7) to a
Mode III crack in Fig. 3(a), enforcement of traction free condition on the crack surfaces
leads to:

id+2aGlb(t)( I Y )-- -+- dt=O
d 2n x-t x+t

where bet) is the to be determined dislocation density function which satisfies

rd
+

2a

Jd bet) dt = bT

(8)

(9)

for a Zener-Stroh crack; while its counterpart, the Griffith crack, is solved under the
following condition:
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rd
+

2a

Jd bet) dt = O. (10)

If there is external loading on the crack surfaces, the right hand side in eqn (8) will not be
zero.

2.2. Approximate solution
To further extend our formulation, a dimensionless system is needed. By introducing

x = _x_-_(d_+_a---,-)
a '

eqn (8) can be rewritten as:

t- (d+a)
T=----

a '
B(t) = b(t) ,

a
(11)

(12)

in which X, TE [-1,1]. In general, eqn (8) or eqn (12) can only be solved numerically.
However, an approximate analytical solution can be obtained when the crack is located
relatively far away from the interface, i.e., dla » I. With this condition, eqn (12) can be
approximated as:

(13)

Solutions to eqn (13) can be found in textbooks (e.g. Hirth and Lothe (1982), page 769),
which is

(14)

where the superscripts ZS and G stand for the Zener-Stroh and Griffith parts, respectively.
They are

b II II: = -I B(X)dX= -I BZS(X)dX.

(15)

(16)

(17)

The separation of eqns (15) and (16) is carried out based on the definition of eqns (9) and
(10).

2.3. Stress intensity factors and critical crack length
The stress intensity factor of the crack can be obtained from the dislocation density

function directly via (Weertman, 1992),



for the left crack tip, and
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(18)

(19)

for the right crack tip. With the decomposition of eqn (14), the total stress intensity factor
consists of two parts, namely, the Zener-Stroh mechanism and the Griffith mechanism. We
denote them as

(20)

Since the crack was initiated from a dislocation pileup, the crack tip where the dislocation
entered the crack is called blunt tip, while the other tip is called sharp tip. Although there
is stress singularity near the blunt tip, the stress at that tip is compressive. As a result the
stress intensity factor at the blunt tip is negative. Therefore the crack propagation is always
initiated from the sharp tip. Due to this reason, our numerical results just show the stress
intensity factors for the sharp crack tip. It is worthwhile to mention that in eqns (15)-(17),
bT < 0 corresponds to the sharp tip nearer to the interface than the blunt tip (Fig. 3a),
while bT > 0 is the case where the sharp tip is farther from the interface.

When the crack is located far from the interface, the dislocation density function is
approximated by eqn (15) and eqn (16), the stress intensity factors ratio is given by

ay
+~-
- 2(d+a) ,

(21)

where the positive and negative signs correspond to the left and right crack tips, respectively.
This approximate solution will be used to check our numerical scheme in the next section.
Furthermore, eqn (21) tells us two important facts, i.e., the Griffith component in total
stress intensity factor tends to zero as d increases, and changes its sign according to y.

The critical crack length is obtained by solving

where for a given net dislocation (Weertman, 1992),

in which a';: is the critical crack length when there is no interface interaction.

2.4. Numerical solution
To find the dislocation density function B(X) for the general case, a numerical method

is employed to solve the integral eqn (12) which is the dimensionless form of (8). Equation
(12) is a typical singular integral equation of the first kind:

where

1 fl B(T) fl- ~-dT+ k(X, T)B(T) dT = f(X),
n _I X - T -I

-l<X<l (22)
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k(X T) = _1 B(T) 1(x) == °
, nX+T+2(d+a)/a'

for the present case.
To obtain the numerical solution of B(T) in eqn (22), Gaussian integration formula

(Erdogan, 1975) is followed. Let

(23)

where F(X) is a bounded function in [-I, I]. Following Erdogan (1975), the interval (-II)
is divided into n small regions according to

(2k- I)n
Tk = cos 2n ' k = I, ... , n ;

nr
X, = cos - , r = I, ... , n - I.

n

The integral eqn (22) and (9) are discreted to the following system of linear algebraic
equations in the unknowns F(T]), ... ,F(Tn) :

r= I, ... ,n-l. (24)

(25)

Equations (24) and (25) offer n linear algebraic equations to solve the n unknowns F(Tk)

(k = I, ... , n). Let p(T) be the numerical solution by taking (bT/na) = I in (25), then

B(T) = ~P(T).
na 1- T 2

By substituting (26) into (18), the total stress intensity factor is obtained as

Gb T -
K=--F(I),
2~

for the case where the sharp crack tip is at X = I.
To find the critical length ac for every distance d, the following equation is used

When d goes to infinity, KG = 0, eqns (15), (18) and (20) lead to

(26)

(27)

(28)

Let a': be the critical crack length at infinity, noting that the Griffth stress intensity factor
at infinity is zero, then

GbT
Kc = .
2~

(29)

Substitution of eqns (27) and (29) into (28) yields a simple result as, if the sharp crack tip
is at X = I,
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(30)

where F(I) ~ F(T\) for large n is the numerical solution from (24) and (25) by taking
brlna = 1 and replacing (dla) in function k(X, T) with (dlaJ. Since

(31)

for every dimensionless distance (dla;'), eqn (30) can be solved by iteration process to get
the critical crack length (acla';'). The above derivations can also be applied to the case
where the sharp crack tip is at X = - 1.

2.5. Discussions
The numerical solutions for the variations of K, the total stress intensity factor at the

sharp tip, and ac the critical length, with the distance d at different values of y, are shown
in Figs 5 and 6, for the two cases where the sharp tip is toward and backward the interface,
respectively. In the figure, K is normalized by

(32)

which is the total stress intensity factor when the distance d is infinity. y < 0 is the case
where material 2 is "softer" than material 1, while y > 0 means material 2 is "harder" than
material 1. There are two special cases, i.e., y = - 1 for free surface (G2 = 0) and y = I
when material 2 is rigid. One interesting result is that Figs 5(b) and 6(b) indicate there is
only one critical crack length even though the stress intensity factor consists of both the
Zener-Stroh and Griffith components. In order to check whether another solution of the
critical crack length has been missed during the numerical iteration procedure to find an
the following argument is considered.

The critical crack length ac is evaluated through the equation

f(a) = K 2 -K; = 0,

where K is the total stress intensity factor and can be written by

(33)

(34)

in which g(y, dla) is the function numerically shown in Figs 5(a) and 6(a). If the equation
in (33) has two roots for an there must exist a value of a such that the derivative off(a) is
zero. With the aid of (34), we obtain

df(a) oK Gbr [ ( ~ d ,( ~J
~ = 2K oa = -K2a~ 9 y,~)+ ~g y,~) , (35)

where g'(y, dla) is the derivative of g(y, dla) regarding to the variable dla while y is kept
constant. This derivative is evaluated numerically from the data shown in Figs 5(a) and
6(a). We found that the expression
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Fig. 5. (a) The total SIF at the sharp crack tip which is towards to the interface; (b) the critical
crack length an normalized by its value when d is infinity.

is always positive. In other words, eqn (35) can not be zero. Therefore, there is only one
critical crack length for the current case. The mechanism here is different to Cottrel's energy
concept explained in the introduction where the equation for solving ac is of the order 2 by
assuming that the stress applied on the crack is constant. In the current case, the stress
acting on the crack due to the interface is a function of dla, as a result, the equation to
evaluate ac for our case will be no more a second order equation as shown in (2).
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Fig. 6. (a) The total SIF at the sharp crack tip which is backwards to the interface; (b) the critical

crack length an normalized by its value when d is infinity.

3. A ZENER~STROH CRACK PARALLEL TO AN INTERFACE

3.1. Solution
As the second configuration, we consider a Zener-Stroh crack parallel to an interface

as shown in Fig. 3(b). The solution for an arbitrary position of a crack near an interface
can be obtained by composing the results in the previous and present sections. Referring
to the coordinates shown in Fig. 4, and a single dislocation solution (Dundurs 1969a), we
have

f
a (I }'(y i) )

bet) - + dt = O.
-a y-t 4d2+(y_t)2

(36)

In a dimensionless coordinate,
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Y=y/a, T=t/a, Y,TE[-l,l].

fl (I (Y T) )B T -- + y - dT = 0
-I ( ) Y-T 4(d/a)2+(Y-T)2 '

where the dislocation density function B(T) will be solved under the condition

f
l b

B(T)dT= ~.
_I a

(37)

Before we present the general numerical solution for the integral equation, an approxi
mate solution is obtained for d» a. Equation (37) is rewritten as:

fl B(T) " flYTdT = - _f_ (Y - T)B(T) dT.
-I - 4(d/a)2 -I

Noting that B(Y) is a symmetric function of Y, we have

f
l B(T) ybrY

-I Y_T
dT = - 4(d/a)2'

Then the dislocation density distribution is obtained as

where

br = fl B(T) dT, J = ~.
a _I a

(38)

(39)

(40)

Upon the substitution of eqn (40) into (18), the stress intensity factor for this dislocation
distribution is

(41)

Numerical solutions for the stress intensity factor and critical crack length obtained
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according to the same procedure as the previous section are shown in Fig. 7(a) and 7(b).
The result for d» a is checked by eqn (41).

3.2. Discussion
It is noticed that an interface crack solution can be reached by setting d = 0 in eqn

(36) or (37). The dislocation density reads as

(42)

However, the stress intensity factor presented in Fig. 7a does not converge to the stress
intensity factor of an interface crack as d tends to zero. This fact has been noticed by other
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researchers in the field of interface fracture mechanics (Hutchinson et al., 1987). As dla
goes to zero, applicable region of the crack tip K-field in material I is approaching to zero
too due to the fact that the crack is now very close to the interface. On the other hand, an
interface crack tip field is formed outside the above mentioned crack tip field for a homo
geneous material. These two crack tip asymptotic expansions can be connected by path
independent integrals. For in-plane problem, due to the intrinsic mixed mode of the interface
crack, the connection between "inner" (homogeneous material K-field) and "outer" (inter
face crack tip field) field is more complex (Hutchinson et al., 1987). This argument can also
be applied to the case formulated in Section 2 where the crack is perpendicular to the
interface.
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